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THE CALCULATION OF FLOW IN A PLANE LAVAL NOZZLE

Ya. I. Alikhashkin, A. P. Favorskiy, P. I. Chushkin

A method of calculation is presented for a potential
uniform flow of a perfect gas in the subsonic and transonic
part of a plane symmetrical Laval nozzle with a given form
of contour.

Let us examine the calculation of potential uniform flow of a perfect /[1130%
gas in the subsonic and transonic part of a plane symmetrical Laval nozzle with
a given form of contour. We will assume that the subsonic portion of the noz-
zle extends to infinity and that the walls of the nozzle are either parallel or
diverge at a certain angle.

Let us study such a case where, under a certain expansion of gas through
the nozzle along the entire narrowest (critical) cross-section of the nozzle,
sonic velocities are attained; corresponding values of divergence and the form
of the sonic line are determined in the result of the calculation. For the
solution of this problem we will apply the numerical method of integral rela-
tions [1l], with the help of which a whole series of two-dimensional problems in
gas dynamics was effectively solved [2]. The solution of the current problem
under the first approximation of the method of integral relations was found
earlier (see [2]). The solution in the general case is given below and examples
are cited of calculations under the first and second approximations.

Let us introduce the origin of a cartesian coordinate system x,y in the
critical section of the nozzle on its axis, while we orient the x axis in the
direction of flow. In view of the symmetry of the nozzle, it is sufficient to
investigate only its upper half (y = 0).

As the basic equations of the problem, let us take the equations of Chaply-

gin
oF 0% . 20 o
%ty =0 Jg—aw=0 (1)

The velocity potential ¢ and the stream function ¢y act here as the independent
variables, while the dependent variables are the velocity modulus V and & its/1131
angle of inclination to the axis of the nozzle. Let us make use of dimension-
less units, relating the velocity to the maximum adiabatic velocity and the
density to the stagnation density. Then, it is obvious that a,zc = (H-1)/@+1),

*/Numbers in the margin indicate pagination of the original foreign text.
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/
" where a* is the critical velocity of sound and ¢ is the index of the adiabatic
curve. In equations (1), F and f are defined by the velocity functions

.

at— V1 W
’-S Vatex O i=S&V—'- p=(1— yy¥ix-1,

For the value of X = 1.4, we have

P =U—8W,  pepy,  p=(—vayh

The region of flow will be represented as a zone, bounded by stream:lines
Y =0 (axis) and ¢ = wN (nozzle wall), in which we shall assume that wN = 1.

Investigating the arbitrary N-th approximation in the method of integral rela-
tions, let usﬂgivide this region into N equal strips with the help of the sys-
tem of stream_lines § = wn =n/N,n=0,1, ..., N. We will designate the

values of all the functions on the stream:line P = wn by the index n; then the

index N will correspond to the wall of the nozzle. Let us integrate equations
(1) with respect to ¢y from y, = 0 to each stream”line y = ¢y , n =1, 2, ...,
0 ~ n

N. As a result, we will arrive at a system of 2N independent integral relations

*n "pﬂ .
d d
%‘S’dﬁ-&ﬁn=0, Egﬁd\p——ln*k fo=0 (p=i,2,--..ﬂ).“
¢ 0 (2)

The functions F and ¥, appearing under the integral sign, will be deter-
mined by approximation through interpolation by polynomials along y from base
points of interpolation on the stream:iines P = wn. With the help of symmetry

for these functions, let us write

N ’ N
Fom 3 0@ 0= D) fony (¥,
. ne= n=1 ,

(3)

where ) S
N — ©e—e s N
Pgn = 2 gk Fr, -1 == 2 ban-1, %%,
k=0 k=1




’
in which a and b are the index coefficients. Then the integral re-
2n,k 2n-1,k
lations (2) will be reduced to an approximation system of 2N ordinary differenti-
al equations in P.

The equation of the nozzle contour will be given in the form.f}=19ﬁ(s),

where s is the dimensionless length of the arc measured from the critical sec-
tion along the contour of the nozzle in the direction of flow. From the in-
dependent variable ¢ in the approximational system, it is more convenient to
change to the variable s, keeping in mind the relation d¥/ds = VN.

The approximational system of ordinary differential equations is divisible
into two subsystems, which are found from the first and second groups of inte-
gral relatlons an? comprls%f corresp%Pdlngly, the derivatives 4V /ds, n=20,1,

s 25e005 N,
ceeeey Ny / Insofar as Wy and Xon-1 in expressions (3) stand for linear combina-
tions, correspondingly, the values of Fn andTSh on the stream:lines under con-
sideration, as well as the derivatives an/ds and df;/ds, will enter linearly

in these subsystems, and the aforementioned can be written as follows:

N ' .
. dav

EAnkF’k]T'f-—onVN ‘(”-ivzo-“oMo

| ] ’

€Y
dé v
23... = —RVy (b=1,2,..., M),
where A Ok Bnk are the numerical values of the generalized coefficients of 1132

Kotes for the integrals, calculable in relation to the interpolational polynomi-
als (3).

Subsystem (5) is resolved in relation to the derivatives and gives

a6, N . .
T =N QCufn GB=1,2,.. ,N—1),
- Lo (6)
N
ddy
ds Eo ) ’ . (7)

where the an are the numerical coefficients.
Since the‘eh(s) are given, the identity (7) becomes the final relation-
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‘ship. Differentiating (7) along s, we will get, closing the subsystem (4), the
equation:

N-1
, dV . 1 dOy\dVy { By
ZGNkf.T;‘+(C~~f~+WW)7?=V;T.r-
k=0 N (8)
Now solving (4) and (8), we will get
dV A -
._‘"_____K" (n =0, 1,...,MN). . (9)

In this manner, differential equations (6) and (9) represent the solution
of the approximating system for determination of the velocities Vn and the

angles of inclinationWS‘ on the stream lines = . This system is numericall
& n -~ n y y

integrated on an electronic computer.

The determinants A and An, appearing in (9), can be written without dif-
ficulty in the general form for the N-th approximation and are expressed through
F;, fé, VN, 9, dﬁ&/ds and dZsN/dsz. Let us find the values of the coeffici-

ents aZn,k’ b2n—1,k’ Ank’ an for the first and second approximations. For

N = 1 we have agy = 0, 300 = "890 = 2 = bll =1, A10 = 2/3, All =1/3, C10 =
—C11 = -2. For N = 2, the corresponding coefficients are given in the table.
: 3a2n' k 3b2n__1. k 180.4“,‘ 3CM
e | 1 | 2 1| 2 1 2 1 2
o | 3| —15 2 | — | — | 57| 24| 9| 18
1 0 16 —16 ’ 8{ —8 34 | 128 8 =32
2 0 —1 4 —1 4 | —1 28 1 14

Investigations show that in the N-th approximation, the determinant A be-
comes zero N times in the transonic region of the nozzle under the conditions
of attainment of sonic velocities on the stream:Jines N of singular moving sad-
dle points. The appearance of such singular points (9) is determined by the
fact that in the scheme of solution under discussion there appears a supersonic
(hyperbolic) region, where it is impossible to fix normal boundary conditions.
The requirements of regularity of solution in these singular points is compris-
ed in the fact that, in each of them, for example, there must be



AN = 0 when A = 0 (10)
by virtue of which then, automatically, all the other An = 0. The indefinitive-
ness of derivatives an/ds at the singular points is determined in (9) by the

usual method.

The infinitely distant point (s = - ) also appears as a singular point of
the approximating system. Here it is necessary to satisfy specific conditions,
for example, for a nozzle with parallel walls when s + - » it is necessary that
all the19h > 0 and all the V_ » V_, where V_ is the sought for value of velo-

city of a uniform flow at the entrance of the nozzle.

In this manner, for the approximational system of equations, (6) and (9)
have place for a boundary problem which can be solved by a choice of either of
two different methods:

1) integrating this system in the direction from s = - » toward singular
points in the transonic region;

2) integrating the system from one of these singular points to s = - o /1133

and to the other singular points.

It turns out that at infinity the approximational system has N arbitrary
parameters (in the approximation N = 1, one arbitrary parameter -- the magni-
tude of gas expansion through the nozzle, i.e., for a nozzle with parallel walls
at infinity, simply the value of V ). 1In the first case, when the integration

of the system proceeds from infinity, these N parameters are selected in such a
way as to satisfy the conditions (10) at N singular points. This means that
here it is necessary to solve a boundary problem of N-th order.

In the second case, numerical integration starts at any singular point,
where three end conditions (7) and (10) allow us to express any three quanti-
ties, for example, the coordinate s (i.e.,WSN) and two velocities. The remain-~

ing 2N-2 sought for quantities are picked up through N-1 conditions of regulari-
ty at the rest of the singular points and through N-1 conditions at infinity.
Consequently, in this case, it becomes necessary to solve a boundary problem
with 2N-2 conditions. When N =1 and N = 2, this route for solution turns out
to be more convenient that the first method; when N = 1, we simply come up with
the problem of Cauchy and all the flows are contained in the result of only the
singlefold integrable system of equations (6) and (9).

In the practical resolution of the calculations, instead of s = — © we in-
vestigate any sufficiently large negative value of sx, during which we utilize
an asymptotic solution of the approximating system. The satisfaction of the
conditions at infinity can be replaced by the requirement that the solution re-
sulting from the method of integral relations satisfies, under this value of sx,



the linearized equation of Prandtl (as was done in [3]).

Let us also note that after the determination of the result, we can, using
formulas (3), construct a velocity field and, specifically, the sonic line and
characteristic bounding the region of influence. The calculation of flow in
the supersonic region of the nozzle is expediently carried out by the method of
characteristics [4] under the given conditions, obtained by the method of inte-
gral relations on certain supersonic lines, P = const, lying immediately beyond
the region of influence.

As an illustration of the described method, the flow in the subsonic and
transonic parts of a nozzle were worked out; the given equation is

@,y = a sh ba/ch? bs.

For values representing the parameters a = 0.75 and b = 0.125, the calculations
were carried out for the first and second approximations. The results of the

calculation are shown in Figure 1, which shows the change in the velocity /1134
V, .
035 ——
Vn
B+ 0.5 j v, =
04 v 208 . /
o5
\ ﬁv, . ' ¥ /. J
. . 04 -
03 a:075 //'7
k 0..3 ) //7 -0
az . A
. ‘ lld? /,//j;/
] wyra
V=20105 - k -""—_—- -~
a/ | 0’5:/‘
. #0725
0 ol
<10 -8 -5 -4 2 P 0 4 3 2 - 0o ¥
Figure 1. Figure 2.

along the axis, Vb, and along the wall, VN’ of the nozzle depending on the po-

tential P. Here the continuous curves correspond to N = 1, and the dotted
curves to N = 2; the value 9 = 0 corresponds to the critical section of the noz-
zle. The very same illustration shows a curve relating‘@k and P, which charac-

terize the geometry of the nozzle. As can be seen, in this case even the ap-
proximation N = 1 gives good accuracy.

With the first approximation, the flow was calculated for a series of noz-
zles with various geometries (a = 0.75, b = 0.125, 0.25, 0.375). For these
nozzles, Figure 2 gives the derived velocities VO (dotted and stroked line) and

6



3

V1 (solid line), while Figure 3 gives the form of the sonic line (dotted).

In conclusion, let us note that the given method may be extended to the
case of an axisymmetric nozzle, where an analogous scheme of solution is adopt-
ed, but the functions F, O, and also y are approximated in steps of /J_. Be-
sides this, the system (4) — (5) allows independent construction of the wall
of the mnozzle for a given distribution of velocities along its axis; neverthe-
less, it is more convenient here to use a different method of solutiom.

To editing on June 22, 1963.
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